
GGF1

 1

A Simple Case Study of a Grid Performance System

Ruth Aydt, Dan Gunter, Darcy Quesnel, Warren Smith, Valerie Taylor

aydt@uiuc.edu, dkgunter@lbl.gov, quesnel@mcs.anl.gov, wwsmith@nas.nasa.gov, taylor@ece.nwu.edu

Grid Forum Performance Working Group
February 22, 2001

1 Introduction

This document presents a simple case study of a Grid performance system based on the Grid Monitoring
Architecture (GMA) being developed by the Grid Forum Performance Working Group. It describes how the
various system components would interact for a very basic monitoring scenario, and is intended to introduce
people to the terminology and concepts presented in greater detail in other Working Group documents.

We believe that by focusing on the simple case first, working group members can familiarize themselves with
terminology and concepts, and productively join in the ongoing discussions of the group. In addition,
prototype implementations of this basic scenario can be built to explore the feasibility of the proposed
architecture and to expose possible shortcomings. Once the simple case is understood and agreed upon,
complexities can be added incrementally as warranted by cases not addressed in the most basic
implementation described here.

Some open issues and complex requirements that came up during the discussions are noted, but no attempt is
made to address them in this document. In the simple case presented here, it is assumed that all components
have the necessary authorization to interact in the manner described. Clearly, authentication and
authorization are two very important considerations in a real implementation of any Grid performance
system.

2 Scenario
Ten workstations (ws1 – ws10) are used as desktop systems by local users and are also available as compute
engines for Grid applications. A monitor is running on each of these workstations to measure the CPU load
every 30 seconds. The CPU load measurements are all forwarded to a central server (srvr) machine on the
same local area network as the workstations. A process on the server makes the load information available to
systems not located on the local network.

One of the system administrators for the workstations telecommutes from her home in another state – her
home machine is named adminsys. She continuously graphs the loads of the workstations in a window on
adminsys to ensure that there are no problems with the ws machines.

Further, all of the load measurements are being archived by an archiving service on the machine archivsys.
The archival data is used by another program to analyze daily system load patterns and to identify time
periods when the workstations are heavily utilized so that backups will not be scheduled during those times.

mailto:aydt@uiuc.edu
mailto:dkgunter@lbl.gov
mailto:quensnel@mcs.anl.gov
mailto:wwsmith@nas.nasa.gov
mailto:taylor@ece.nwu.edu

GGF1

 2

3 Terminology

In this section we define some of the basic terms used by the Grid Forum Working Group and relate them to
the simple case study presented in this document.

3.1 Event, Event Type, and Event Data

An event∗ is a structure containing one or more items of data that relate to one or more resources. Every event
has an associated event type that uniquely identifies the structure for that particular event. The term event
data refers to one or more of the items of data making up an event.

In the scenario described above, the machines adminsys and archivsys are interested in events of type
CPU_LOAD. They want to receive CPU_LOAD event data describing the load for systems ws1 through
ws10. Depending on the implementation, a single event may or may not contain information for all of the
systems. In the implementation outlined below, an event contains the CPU load information for a single
system.

3.2 Event Schema

An event schema describes the structure for a particular event.

In the basic scenario described in this document, a schema will be defined for the CPU_LOAD event type.

3.3 Producer

A producer is a component that makes event data available to other components that are part of the Grid
Monitoring Architecture. The producer speaks a standard protocol and generates event data in a standard
format. It is possible that there will be multiple standard protocols and formats defined within the GMA. The
producer may not be the ultimate source of the data – that source may or may not speak the same protocol and
use the same event data format. The GMA is not concerned with defining the protocol(s) and format(s) used
by the original sources of the performance data.

In our scenario, a process on srvr is a producer and makes event data available to other components in the
Grid performance system being described. Monitoring processes on ws1 through ws10 are the sources of the
measurement data, but they are not producers.

3.4 Consumer

A consumer is a component in the Grid Monitoring Architecture that receives event data from a producer. It
speaks a standard protocol and expects the event data to be in a standard format.

In the basic scenario described, processes on adminsys and archivsys are consumers of the event data
produced by srvr. The adminsys consumer process will graph the per-host CPU_LOAD measurements. The
archivsys consumer process will write the event data to disk for later examination.

∗ Events, as defined and used in this document, are implicitly performance events. We make no attempt to define or
discuss other types of events.

GGF1

 3

3.5 Directory Service

A directory service is a searchable component in the Grid Monitoring Architecture used to store and forward
information that is of general interest to other components in the system. The directory service can be
queried through a variety of search mechanisms and returns information matching the specified selection
criteria. The directory service may in practice be implemented as a set of distributed, interconnected
individual directory services under the control of different organizations. We anticipate using the
Lightweight Directory Access Protocol (LDAP) to interface with the directory service. See [1,2,3] for
information on LDAP.

In the GMA, several distinct types of information will be stored in the directory service and we refer to the
directories for each information type by a unique name. The actual implementation may place all entries in a
single directory service, but conceptually we believe it is easiest to think of them as independent directories.
Here we define only those directories that are necessary to implement the basic scenario.

3.5.1 Event Type Directory

The Event Type Directory contains event schema for the various events in the system. The Event Type
Directory does not contain actual events. For each event type there will be one schema in the Event Type
Directory -- within the system all events of the same type must have the same structure.

The Event Type Directory can be searched by event type. It can also be searched by event element name, for
example, “return all the event types that contain an element named cpuload_measurement”.

To support the basic scenario described, the CPU_LOAD schema must be included in the Event Type
Directory.

3.5.2 Event Producer Directory

The Event Producer Directory contains information about producers and the event types they provide.

All producer information in the Event Producer Dictionary is structured according to an Event Producer
Schema. In contrast to the Event Type Directory, which contains the event schema but not the actual events,
the Event Producer Directory does contain the actual producer information records and not just the schema
for those records.

Consumers use the Event Producer Directory to locate producers of events they are interested in receiving.
There are many possible ways a consumer might want to search for producers in the Event Producer
Directory including: by event type, by producer, by host where the measurement originated, or by any
number of other keys. The choice of what search keys should be supported is an open question.

For the basic scenario outlined in this document, the Event Producer Directory will contain one or more
entries indicating that CPU_LOAD event data for ws1 through ws10 is available from a producer on srvr.

3.5.3 Event Consumer Directory

The Event Consumer Directory contains information about consumers, the event types they accept, and the
services they provide.

GGF1

 4

All consumer information in the Event Consumer Dictionary is structured according to an Event Consumer
Schema. As with the Event Producer Directory, the Event Consumer Directory does contain the actual
consumer information records and not just the schema for those records.

Producers use the Event Consumer Directory to locate consumers that provide services of interest. As with
the Event Producer Directory, the search keys that should be supported for the Event Consumer Directory
remains an open question.

To support the basic scenario described in this document, the archival process on archivsys will register with
the Event Consumer Directory as a consumer that accepts all event types and provides an archival service.

4 Implementation

In this section we describe, at a fairly high level, the steps necessary to implement the basic scenario on the
Grid Monitoring Architecture. Through this description we hope to give the reader a clear idea of how the
GMA components cooperate, and to provide a framework from which prototype implementations can be
developed to test various protocols and formats.

4.1 Event Schema and Event Type Directory

To implement the basic Grid performance system described, we must first define the event schema for the
CPU_LOAD event. This schema will be stored in the Event Type Directory where it can be located and
used to interpret data values in CPU_LOAD events. We use a representation-independent format to define
the schema here:

 Event Type Event Description
CPU_LOAD CPU load measurement for a single host

Element Name Element Data Type Element Description
cpuload_measurement double measured CPU load
hostname string host where measurement was taken
timestamp ASCII timestamp time measurement was taken
producer URL URL for producer generating event data

CPU_LOAD Schema

As defined, a CPU_LOAD event has four data elements that contain the CPU load measurement, the host the
measurement relates to, the time the measurement was made, and an identification of the producer that made
the event data available.

4.2 Event Producer Directory

The next step in the implementation process is for the producer, srvr, to add entries to the Event Producer
Directory, advertising that it will provide CPU_LOAD event data for ws1, ws2, … ws10. As stated earlier, we
expect to use LDAP to interact with the Event Producer Directory and insert these entries.

We have not yet reached a consensus on the contents of the Event Producer Directory entries, that is, the
Event Producer Schema has not yet been set. We believe further discussion and experimentation are required
to correctly identify an appropriate Event Producer Schema, and the version presented here should not be
interpreted as a standard.

GGF1

 5

For the purpose of this simple case study we list the type of information that might be included in the Event
Producer Directory entries. Two Event Producer Directory entries are shown, those for the CPU load data
from ws1 and ws2. Similar entries will exist for ws3 through ws10.

Field Name Value

Producer srvr:portXX
EventType CPU_LOAD
Host ws1
Parameters NONE
Filters NONE
Access OPEN
ConnectionProtocol SimpleXML
DataFormat XML
Producer srvr:portXX
EventType CPU_LOAD
Host ws2
Parameters NONE
Filters NONE
Access OPEN
ConnectionProtocol SimpleXML
DataFormat XML

Event Producer Directory Entries

In the simple case study presented in this document, the consumer on adminsys is interested in CPU_LOAD
data for any of the ws machines. To support this scenario, the Event Producer Directory will be searched for
entries with an EventType of “CPU_LOAD” and a Host of “ws1” through “ws10”. The Producer field
specifies where to contact the producer to receive events of interest.

The remaining Event Producer Directory fields are not explicitly used in this simple case study, but are
included to show possible extensions that are discussed in other working group documents. Parameters could
be used to indicate that the producer would allow the consumer to specify some parameters, such as
frequency of event record transmission. The Filters field could be used to indicate that the producer has
some built-in filtering capabilities, such as sliding window average computations. The ACCESS field is
intended to provide different levels of access to the event data that is being produced – for example, make
data available only to consumers within the same organization or make data available to anyone.

The ConnectionProtocol field could be used to specify which of several standard protocols the producer
understands, for example SimpleXML or SNMP. The DataFormat field could be used to specify which of
several standard data formats the producer is capable of generating, for example XML, ULM, SDDF, SNMP.
A consumer may be fluent in a limited set of the possible protocols and formats and consequently would only
consider connecting to producers that “speak” those protocols and formats.

4.3 Event Consumer Directory

Another step in the implementation process is for the archiving consumer on archsys to advertise its
existence. As with the Event Producer Directory entries, the Event Consumer Schema describing the
contents of the Event Consumer Directory entries has not yet been finalized.

GGF1

 6

For the purpose of this simple case study we show the type of information that might be included in the Event
Consumer Directory entries. An entry for the archiving consumer on archsys is shown.

Field Name Value
Consumer archsys:portYYY
EventType *
Service archive
Access Producer=*.mydomain.edu
ConnectionProtocol SimpleXML
DataFormat XML

Event Consumer Directory Entry

The Consumer field specifies where to contact the consumer process, the EventType field indicates the types
of events the consumer is willing to accept, and the Service field shows the service or services the consumer
provides. The Access, ConnetionProtocol, and DataFormat fields have the same meaning as they did in the
Event Producer Schema. Note that values containing *’s indicate wildcards.

In our case study, the producer process on srvr will search the Event Consumer Directory on startup to find a
consumer that will accept and archive the CPU_LOAD events related to machines ws1 through ws10.
Assuming srvr is in “mydomain.edu”, the producer process on srvr will be able to contact the consumer
process on archivsys and request that the consumer subscribe to the CPU_LOAD events for ws1 through
ws10 that are made available by the producer.

4.4 Consumer/Producer Communication Established

Now that the directory service contains the event type schema, event producer information, and event
consumer information, the Grid performance system is ready to share measurement information taken on
resources in one part of the Grid with processes running on other systems in the Grid

In particular, for our simple case study the load-graphing tool running on adminsys posts a query to the Event
Producer Directory requesting any CPU_LOAD events for machines ws1 through ws10. The query returns
ten matches, all with the same Producer contact values. Using the connection protocol retrieved from the
Event Producer Directory, the load-graphing tool on adminsys connects to the producer process at
srvr:portXX, and subscribes to the CPU_LOAD events for ws1, ws2, … ws10.

After starting up, the producer process on srvr queries the Event Consumer Directory to find a consumer that
offers archival services for CPU_LOAD events. Assuming srvr is in “mydomain.edu”, the entry for the
archival service on archivsys is returned. At this point, the producer process on srvr contacts the archival
consumer process on archivsys and requests that the consumer subscribe to the producer’s CPU_LOAD
events for ws1 through ws10.

The consumer/producer communication channel is established when a consumer subscribes to a producer.
That is, the consumer notifies the producer that they want to receive certain events until further notice. In the
simple case study scenario, the subscription from the archival consumer is producer-initiated.

4.5 Producer Sends Event Data to Consumers

GGF1

 7

Once the consumers have subscribed to the events of interest, the producer sends CPU_LOAD event data to
the consumers until the subscription is cancelled.

The event data is sent in a standard protocol, which could be either the same as the connection protocol or a
different protocol negotiated during the connection process. The event data is sent in the format advertised in
the Event Producer Directory. If the producer advertised that it can generate multiple data formats, then the
consumer may specify which of those formats to use in the subscription request.

Sample event data encoded in XML is shown here, with white space added for readability:

<CPU_LOAD>
 <cpuload_measurement>30.09</cpuload_measurement>
 <hostname>ws1</hostname>
 <timestamp>2001-01-30T20:33:05.003Zp.001a.5</timestamp>
 <producer>http://srvr.mydomain.edu/producerXX</producer>
</CPU_LOAD>

<CPU_LOAD>
 <cpuload_measurement>22.98</cpuload_measurement>
 <hostname>ws9</hostname>
 <timestamp>2001-01-30T20:34:15.07Zp.01a.5</timestamp>
 <producer>http://srvr.mydomain.edu/producerXX</producer>
</CPU_LOAD>

The load-graphing tool receives the event data and updates the display for each host with the appropriate
measurements. The archiving service receives the event data and writes it to the archive for later analysis by
the backup-scheduling program.

5 Summary

We have described a very basic performance monitoring scenario in a Grid environment, defined terms used
within the Grid Forum Performance Working Group and related those to the scenario, and outlined at a fairly
high level how the scenario could be implemented with the components defined in the Grid Monitoring
Architecture. This basic scenario ignores may important and complex issues that are critical to a fully
functional Grid Performance System in the interest of presenting basic concepts and providing a starting point
for discussion and prototype implementation experiments.

6 Open Issues

In this section we note many of the issues that were raised and set aside when this simple case study was
developed, recognizing the need to return to them in future discussions and documents. These are loosely
arranged based on the system components they relate to, but in many cases the issues cross boundaries
between components and therefore the categories should not be considered to be exact.

6.1 Event Schema and Event Type Directory

• No units or accuracies are specified for any of the event elements.
• We may also want to include other Event Identifiers, in addition to the Event Type. For example, and

OID.

GGF1

 8

• In the simple case study, all event elements are required. In practice, there may be event types for which
some elements are optional.

• If an event element has units associated with it, how would two events that are identical except for the
units associated with one of the elements be implemented? A particular example of this would be if the
CPU_LOAD event element “cpuload_measurement” had units associated with it and in some cases the
units were “percent busy over last minute” while the others they were “percent busy over the last five
minutes”. Some options:

o As two distinct event types, perhaps CPU_Load_sec and CPU_Load_fivesec. Here the units are
implicit in the event type. No extra event data is sent from the consumer to the producer to
indicate units, and no conversions need to take place when the data is received. The downside is
the possible proliferation of event types with only minor differences between them.

o As a single event type with an additional element specifying the measurement units:
Event Element < name=measurement_units, type=integer, description=number of seconds in
measurement window>. This method would require passing the additional “measurement_units”
information with each event, increasing the amount of data transmitted. The ‘dual-duty’ makes
interpreting the measurement value more complicated on the consumer side, for example in
labeling the displays.

o As a single event type, with the units somehow specified for all event records from a particular
hostname/producer combination. This could be done if the producer and consumer event data
formats supported the sending of partial events. In the basic case study the event data contained
all data items making up an event. If instead only some data items were sent, the consumer
would be responsible for “assembling” the full event from several partial events. This
implementation choice would not require larger events, but would add complexity to
accommodate the partial events and the interpretation of the event data in the context of the
appropriate units on the consumer end.

o As a single event type, with registration of the units in the Event Producer Directory when the
producer registers that it will generate CPU_LOAD events for a given host. This implementation
choice would not require larger events, but would add complexity to accommodate the additional
information in the Event Producer Directory and the interpretation of the event data in the context
of the appropriate units on the consumer end.

6.2 Event Producer Directory

• Unsure how consumers will want to locate information within the event producer directory, that is what

keys to search on and implications on directory service organization. Some possibilities are:
o …/Site/Producer/Host/<EventType>
o …/Site/Host/Producer/<EventType>
o …/Site/EventType/Host/Producer/…

 or some combination of these…
• Support for Parameters in the directory, in producers, and consumer requests, needs to be fully designed

and described. Some Parameters may be associated with the Event Type, (for example, remote host to
contact in a ping request), while others may vary depending on what a given producer will support.

• Support for Filters in the directory, in producers, and consumer requests, needs to be fully designed and
described. The Corba Event Service discussion on filters that support the use of logical expressions
based on event element and event parameter values should be reviewed for possible adoption or
implementation ideas.

• ConnectionProtocol and DataFormat specification in the directory, and in producer/consumer interactions
needs to be fully designed and described.

• Access specification in the directory is simply defined as OPEN. This needs to be fleshed out and
perhaps integrated as part of the directory service implementation hierarchy. An alternate suggestion was

GGF1

 9

an enumeration of Access types like OPEN; RESTRICTED; GROUP; etc. that would be put into the
tuple as shown. This needs more debate. Someone also mentioned “aci attributes” in LDAP that address
access issues and those should be investigated.

• Need to come to agreement on the Event Producer Schema

6.3 Event Consumer Directory

Most (all?) of the open issues for the Event Producer Directory have counterparts for the Event Consumer
Directory.

6.4 Other Directory Services

• Additional directories will likely be needed. For example, a Type Directory to define recognized data

types and a Unit Directory to define recognized units.

6.5 Producer/Consumer Exchanges

• What data formats to support
• What wire protocols to support
• In the simple case study the consumer subscribed to certain event data – the GMA also supports a one-

time query interface
• Security issues – how to verify that the consumer is who they claim to be and that they are authorized to

receive the requested data. When to do this verification.
• Considerations regarding data volume. See discussion in section 6.1 on partial events as one possible

way to reduce event data volume. Also, some discussions about binary and compressed formats to
reduce volume.

• Interpretation of event data, sometimes called “context”. In general, measurement data is interpreted
relative to a larger set of information than what is typically transmitted in the event data itself. This may
include things like operating system version, clock accuracy, frequency of event data transmission, etc.
How is this critical information conveyed, archived, used?

References

[1] T. Howes, M. Smith, G. Good. Understanding and Deploying LDAP Directory Services. Macmillan

Technical Publishing, 1999.
[2] T. Howes and M. Smith. LDAP: Programming Directory-Enabled Applications with Lightweight

Directory Access Protocol. Macmillan Technical Publishing, 1997.
[3] Innosoft’s LDAP World webpage with links to various on-line LDAP documents:

http://www.innosoft.com/ldapworld

http://www.innosoft.com/ldapworld

	Introduction
	Scenario
	Terminology
	Event, Event Type, and Event Data
	Event Schema
	Producer
	Consumer
	Directory Service
	Event Type Directory
	Event Producer Directory
	Event Consumer Directory

	Implementation
	Event Schema and Event Type Directory
	Event Producer Directory
	
	
	
	Value

	Event Consumer Directory
	Consumer/Producer Communication Established
	Producer Sends Event Data to Consumers

	Summary
	Open Issues
	Event Schema and Event Type Directory
	Event Producer Directory
	Event Consumer Directory
	Other Directory Services
	Producer/Consumer Exchanges

	References

